Quantum WG liaison (& ECDSA key usage at IETF) report

Tadahiko Ito

Feb. 2020
It will not likely happen near future that current cryptographies were decrypted by quantum computer.
What is the Risk of Quantum computer for Crypto-system (August 2019, Liaison Work with Bank of Japan)
A day adversary can attack crypto-system by quantum computer.

Every cryptosystem will be weak suddenly?
A day adversary can attack crypto-system by quantum computer

Every cryptosystem will be weak suddenly?
What is the Risk?

- **Crypto-system**
 - Data
 - Protection Period
 - Xday
 - Data
 - Protection Period
 - Data
 - Protection Period
When is X day?? (with very optimistic expectation)

- **Logical qubit** = ideal qubit
- **Real qubits** (physical qubits) is not ideal
 - Need mechanism to reduce error
 - Need mechanism to make fault tolerant
 - Cohrence time

Who will have more problem

Lifetime of crypto-system

Margin to migrate

Migration period

Data protection period

Migrate to post quantum crypto system

(web) Authentication: very short
Secrecy: can be long
Contents commitment: can be long

It is relatively easier for contents commitment, but it is hard for secrecy.

Crypto-agile system: short
It can be very long for IoT embedded system, SMIME, etc.
Conclusion (for banks)

- Post Quantum Cryptography
 - Early stage
 - Some question on cost efficiency
 - May need to watch trends for particular technology field.

- Data classification
 - In term of lifetime of data
 - Lifecycle management of data,

- More Crypto-aglity for IoT, long-term contents commitment, etc..

- Efficient use of timestamp for long term contents commitment
 - E.g) Evidence Record Syntax

May have side effect to increase security.
5.1 Algorithms
Root certificates in our root program, and any certificate which chains up to them, MUST use only algorithms and key sizes from the following set:
• RSA keys whose modulus size in bits is divisible by 8, and is at least 2048.
• ECDSA keys using one of the following curves:
 • P-256
 • P-384
SubjectPublicKeyInfo	.algorithm	Meta data
Unrestricted (ECDSA, etc..) | id-ecPublicKey | Secp-256r1, etc… |
ECDH [RFC5480] | (MAY) id-ecDH | id-ecPublicKey, etc.. |
ECMQV [RFC5480] | (MAY) id-ecMQV | id-ecPublicKey, etc.. |
EDDSA [RFC8410] | (only define) id-Ed25519 | Absent |
Other (like ECIES??) | Let them use that | (do not care) |

We do not have “id for ECDSA key”
Technically, ECDSA key can be use for any ECC
Key usage problem

• We know ECDSA is signature algorithm
 – So we can not use that for key encipherment or data encipherment.

• However, if certs with encipherment bit exist, does that violate any standard / requirements??
 – Linting tools did not alert such certs
 – We had published such certs
 – We had problem of describe “reason” to revoke such certs.
- RFC5480 say…

If the keyUsage extension is present in an End Entity (EE) certificate that indicates id-ecPublicKey in SubjectPublicKeyInfo, then any combination of the following values MAY be present: digitalSignature; nonRepudiation; and keyAgreement.

For ECDSA, (static)ECDH, and (possibly, other algorithm).

ECDSA, etc..

For (static)ECDH, ECMQV

ECDSA, etc..

Does not have any description for key encipherment or data encipherment
If the keyUsage extension is present in a certificate that indicates id-ecPublicKey as algorithm of AlgorithmIdentifier [RFC2986] in SubjectPublicKeyInfo, then following values MUST NOT be present: keyEncipherment; and dataEncipherment.

Unrestricted cert:
https://tools.ietf.org/html/rfc5480#section-2.1

Key usage bit