
Paul van Brouwershaven

8 June 2022

Server Certificate Working Group 

CA/Browser Forum F2F #59 - Redmond, WA, USA

ACME CERTIFICATE 
MANAGEMENT



We reviewed the certificate management processes of some well-known online service providers and 

concluded that the provisioning of custom certificates is a manual process… unless the requestor has 

the knowledge and budget to develop and maintain a custom integration with a proprietary API for 

each of the platforms they use. 

An alternative to a custom integration is the usage of a Certificate Lifecycle Management (CLM) 

provider or using a plugin for Ansible, Terraform, etc. (if such integrations are available). 

How do we deploy custom certificates?

ACME CERTIFICATE MANAGEMENT



CLOUDFLARE (CDN)



CLOUDFLARE (CDN) – CERTIFICATE OPTIONS

4



FASTLY (CDN)

While “Fastly-managed certificates 

use the ACME protocol to procure 

and renew TLS certificates to procure 

and renew TLS certificates from Let’s 

Encrypt, a non-profit certification 

authority, and GlobalSign, a 

commercial certification authority”, 

they do not allow you to configure 

your own ACME server and key 

binding.



AZURE (CSP) - KEY VAULT / APP SERVICE



AWS (CSP) - CERTIFICATE MANAGER



GOOGLE CLOUD (CSP) - LOAD BALANCER



GOOGLE CLOUD (CSP) - APP ENGINE



GOOGLE CLOUD (CSP) - CERTIFICATE MANAGER



No option to revoke the certificate in the overview

GOOGLE CLOUD (CSP) - CERTIFICATE MANAGER



No option to revoke the certificate in the certificate details

GOOGLE CLOUD (CSP) - CERTIFICATE MANAGER



Deletion of the certificate will trigger automatic revocation

GOOGLE CLOUD (CSP) - CERTIFICATE MANAGER



DIGITALOCEAN (CSP) - LOAD BALANCER

You can use Let’s Encrypt (ACME), 

provide some configuration, but you 

can not specify your own ACME server 

or account binding.

Or you can upload a custom certificate.



No option to revoke, not revoked at deletion

DIGITALOCEAN (CSP) - LOAD BALANCER

15



DIGITALOCEAN (CSP) - LOAD BALANCER

16



AND SOME OTHERS WE CHECKED…

Content Delivery Network (CDN)

◦ Cloudflare

◦ Fastly

◦ Akamai

Cloud Service Provider (CSP)

◦ Azure

◦ Google Cloud

◦ AWS

◦ IBM Cloud

◦ DigitalOcean

◦ OVH

◦ Hertzner

◦ Vultr

PaaS

◦ WordPress

◦ Salesforce

◦ HubSpot

Control panels

◦ CPANEL / WHM

◦ Plesk

Appliances / other devices

◦ HP Officejet

◦ Reolink

◦ Ubiquity / Unifi

◦ Synology



ACME IN SAAS/PAAS MODELS

While most SaaS/PaaS provide the ability to request/provision certificates, these are limited to one or 

more of the following mechanisms:

1. Request and provision a DV certificate through ACME from Let’s Encrypt

2. Request and provision a certificate from us or provider X (i.e., Google, Amazon, etc.)

3. Order an OV/EV certificate from a CA under contract with the platform

4. Upload a custom certificate (using PEM/PFX files or strings)

a) Some providers create the key for you, others require you to generate one yourself.

5. Develop a custom integration via a proprietary API



CONCLUSION

It’s not possible to choose a custom ACME server unless you manage the virtual/physical server 

yourself so that you can change default configuration or command line options

What if there is a security need to move to 90-day validity periods?

◦ A certificate with a validity of 90-days ‘requires’ automation

❖ Renewing a certificate manually 4-6 times will not be ‘appreciated’

◦ When subscribers can’t specify their preferred ACME server, the default will become the norm!

◦ If the default is the norm, we lack issuer diversity which will become a major point of failure.



HOW CAN WE FIX THIS?

Most providers obtain their DV certificates from Let’s Encrypt through the ACME protocol but do not allow 

users to configure their own ACME endpoint and provide no option to configure an account binding. 

Maybe an update to the ACME specification that allows clients to lookup their preferred ACME server

before contacting any ACME servers could help. 

For example:

1. ACME client checks the CAA record for the (first) DNS name (example.com)

2. CAA record points to “ca.example”

3. Client downloads and checks “https://ca.example/.well-known/acme.json”

4. The “acme.json” config file contains something like:

{

“server”: “https://acme.ca.example/v2”, 

“account-binding”: “optional”

}

5. The ACME client requests the certificate from https://acme.ca.examplev/v2 as indicated in the configuration

https://acme.ca.examplev/v2


USING CAA AS DOMAIN CA ‘PREFERENCE’

Using CAA would also allow users to specify a backup CA through multiple CAA records 

(we might need to think about the priority and certificate type, which could be CAA 

attributes). 

The config file would allow CAs to update their configuration and gives them ability to 

switch to a backup server in the case of an incident.

This method would encourage the option of CAA and a client preference might also 

reduce the reliance on Let’s Encrypt and remove the potential ‘single point of failure’ it 

could be in the ecosystem currently.

Of course, we could also specify the ACME server directly in the CAA or other type of 

DNS record but for know we thought it would be easier if clients do not have to deal with 

the complexity of ACME server addresses etc.



ACME IN SAAS/PAAS MODELS

What if there is a security need to move to 90-day validity periods?

◦ A 90-day certificate ‘requires’ automation

◦ The default will become the norm when subscribers can’t specify an ACME server

◦ If the default is the norm, we lack issuer diversity which will become a major point of 

failure

Can we collaborate on an ACME RFC and client change to require and implement 

domain specific ACME preferences based on CAA records?

Should we advocate that platforms need to allow users to configure their preferred

ACME server and account binding?



© Entrust Corporation
23


	Slide 1: ACME certificate management
	Slide 2: ACME certificate management
	Slide 3: Cloudflare (CDN)
	Slide 4: Cloudflare (CDN) – Certificate options
	Slide 5: Fastly (CDN)
	Slide 6: Azure (CSP) - Key vault / App Service
	Slide 7: AWS (CSP) - Certificate Manager
	Slide 8: Google Cloud (CSP) - Load balancer
	Slide 9: Google Cloud (CSP) - App Engine
	Slide 10: Google Cloud (CSP) - Certificate Manager
	Slide 11: Google Cloud (CSP) - Certificate Manager
	Slide 12: Google Cloud (CSP) - Certificate Manager
	Slide 13: Google Cloud (CSP) - Certificate Manager
	Slide 14: DigitalOcean (CSP) - Load Balancer
	Slide 15: DigitalOcean (CSP) - Load Balancer
	Slide 16: DigitalOcean (CSP) - Load Balancer
	Slide 17: And some others we checked…
	Slide 18: ACME in SaaS/PaaS models
	Slide 19: Conclusion
	Slide 20: How can we fix this?
	Slide 21: Using CAA as Domain CA ‘preference’
	Slide 22: ACME in SaaS/PaaS models
	Slide 23

