
Planning for Post-Quantum Cryptography

CA/Browser Forum 64, Tokyo, Japan

Russ Housley
Vigil Security, LLC

Motivation

• If Cryptographically Relevant Quantum Computers (CRQCs) are ever
built, these computers will be able to break the public key
cryptosystems that we currently use.

• A post-quantum cryptography (PQC) is secure against CRQCs.
• It is open to conjecture when it will be feasible to build such

quantum computers; however, RSA, DSA, ECDSA, DH, ECDH, and
EdDSA are all vulnerable if a CRQC is developed.

• We need to plan for a transition to PQC algorithms.

NIST Hash-based Signature Algorithms

• The U.S. National Institute of Standards and Technology (NIST) has
already approved two PQC hash-based signature algorithms and
published their specifications:
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-208.pdf

• Digital Signatures:
HSS/LMS (RFC 8554) and XMSS (RFC 8391)

Note: NIST adopted these two algorithms that were already documented in RFCs.

NIST PQC Competition Winners

• Key Encapsulation Mechanism (KEM):
CRYSTALS-KYBER ML-KEM (FIPS 203)
HQC  No NIST name yet (not published yet)

• Digital signatures:
CRYSTALS-DILITHIUM ML-DSA (FIPS 204)
SPHINCS+  SLH-DSA (FIPS 205)
FALCON  FN-DSA (not published yet)

NSA Announced Direction

About a month after NIST announced the winning algorithms, NSA
announced that National Security Systems should begin planning to
implement:
• Prefer HSS/LMS for

software signing
• Prefer ML-DSA for

other signing
• Prefer ML-KEM for

key management

NSA Announced Direction

About a month after NIST announced the winning algorithms, NSA
announced that National Security Systems should begin planning to
implement:
• Prefer HSS/LMS for

software signing
• Prefer ML-DSA for

other signing
• Prefer ML-KEM for

key management
Transition is going to take a very
long time. Let’s get started!

IETF Security Protocols

Many security protocols are used in the Internet;
all need to support PQC:
• IPsec
• TLS
• SSH
• S/MIME
• OpenPGP
• …
• Internet profile for X.509 certificates

Large Public Key and Signature Size

CRYSTALS-Dilithium

FALCON-512

SPHINCS+-128s

HSS/LMS

XMSS^MT

ECDSA-256

RSA-2048

2420 bytes

666 bytes

7856 bytes

2964 bytes

4963 bytes

64 bytes

256 bytes

Signature Algorithm Signature Size1

1with example parameters

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 bytes

Many thanks to VeriSign for this graph

Large Public Key and Signature Size

CRYSTALS-Dilithium

FALCON-512

SPHINCS+-128s

HSS/LMS

XMSS^MT

ECDSA-256

RSA-2048

2420 bytes

666 bytes

7856 bytes

2964 bytes

4963 bytes

64 bytes

256 bytes

Signature Algorithm Signature Size1

1with example parameters

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 bytes

Plan for an increase of 10X in protocols …

Transition Priorities

Confidentiality – The attacker can record today’s traffic, and then break
it when a CRQC is eventually developed. (Harvest Now, Decrypt Later.)

Authentication – Tends to be real-time interaction, so not a concern
until a CRQC is imminent.

Signature – Tends to be archival, so a notary or archivist can resign
with a PQC signature at some point before a CRQC is available. (See
RFC 4998: Evidence Record Syntax.)

PQC Algorithms and Certificates

Goal – Deploy PQC algorithms before a CRQC that is available to break
the public key algorithms in widespread use today.
Assumption – While people gain confidence in the PQC algorithms and
their implementations, security protocols will mix traditional
algorithms and PQC algorithms.
Recognize – Such transitions take a long time—at least a decade.
Timeframe – NIST recommends PQC infrastructure in place by 2030,
and stop using traditional public key algorithms by 2035.

Note: People that trust the PQC algorithms can transition without
mixing with a traditional public key algorithm. However, a lengthy
transition is still needed.

Transition History: SHA-1 to SHA-256
• NIST recommended end of life for SHA-1 by end of 2010
• IETF started work in 2005 – 5 years should be enough!
• In the same year, Wang showed that SHA-1 was not as strong as

expected
• 269 instead of 280 design goal
• Subsequent research improved the attack, reduced strength to 263

• Additional incentive!
• The transition still took more than 10 years
• NIST goal is less than 10 years to stop using traditional public key

Two Possible Certificate Approaches

Hybrid: Two certificates, each certificate has one public key and one signature:
• one certificate traditional algorithm, signed with traditional algorithm
• one certificate PQC algorithm, signed with PQC algorithm

Composite: One certificate, containing two public keys and two signatures:

SEQUENCE OF
Traditional public key

PQC public key

Signature

Traditional signature

PQC signature

Public Key

SEQUENCE OF

Trad.
Root

Trad.
CA

Trad.
EE

PQC
Root

PQC
CA

PQC
EE

Trad.
Priv. Key

PQC
Priv. Key

Security Protocol

Trad.
Priv. Key

PQC
Priv. Key

Security Protocol

Trad.
Root

Trad.
CA

Trad.
EE

PQC
Root

PQC
CA

PQC
EE

Hybrid Composite
Two Certification Paths One Certification Path

Gaining Confidence (session-oriented)

• While people gain confidence in the PQC algorithms and their
implementations, security protocols are expected to mix traditional
and PQC algorithms

• IPsec and TLS, use a KDF to compute shared secret from two inputs:

SS = KDF(SST, SSPQC)

Gaining Confidence (session-oriented)

• While people gain confidence in the PQC algorithms and their
implementations, security protocols are expected to mix traditional
and PQC algorithms

• IPsec and TLS, use a KDF to compute shared secret from two inputs:

SS = KDF(SST, SSPQC)
ML-KEM

Diffie-Hellman

For example:

Gaining Confidence (store and forward)

S/MIME could do the same as IPsec and TLS, or more likely,
S/MIME use double encapsulation:

Sig1

Content

Sig2
Content

Env2
Env1

SignatureEncryption

Gaining Confidence (store and forward)

S/MIME could do the same as IPsec and TLS, or more likely,
S/MIME use double encapsulation:

Sig1

Content

Sig2
Content

Env2
Env1

SignatureEncryption

ML-KEM

Diffie-Hellman

For example:

ML-DSA

ECDSA

For example:

IETF SUIT Working Group

The IETF SUIT WG has specified a signed manifest for software updates.
A PQC signature will be one of the mandatory to implement
algorithms:
• Signing the software with a PQC algorithm offers a way to deploy

other PQC algorithms, even if a CRQC is invented soon
• Current draft specification requires implementation of HSS/LMS

IETF IPsecME Working Group

The IETF IPsecME WG has already specified a way for IKEv2 peers to
perform multiple successive key exchanges:
• IKE_SA_INIT: Always a traditional algorithm
• IKE_INTERMEDIATE: Allows PQC algorithms, and supports message

fragmentation to handle the large public key sizes
• If any of the key exchange methods is a PQC algorithm, then the final

keying material is post-quantum secure
• IPsecME WG is specifying the NIST PQC algorithms for IKEv2

IETF TLS Working Group

The IETF TLS WG is defining the hybrid key exchange, which uses two or
more algorithms to produce a final session key that is secure as long as
at least one of the component key exchange algorithms remains
unbroken.
• Client and server send the key shares, then they construct the

concatenated_shared_secret by:
shared_secret_1 || shared_secret_2 || … || shared_secret_n

• Compute the Handshake Secret in the TL 1.3 key schedule:
concatenated_shared_secret -> HKDF-Extract = Handshake Secret

• TLS WG is specifying the hybrid and pure PQC algorithms for TLS 1.3

IETF LAMPS Working Group

The IETF LAMPS WG is specifying pure NIST PQC algorithms and
composite algorithms for both certificates and S/MIME:
• specify the use of the NIST PQC public key algorithms using the

object identifiers that are assigned by NIST
• specify formats, identifiers, enrollment, and operational practices for

hybrid key establishment algorithms
• specify formats, identifiers, enrollment, and operational practices for

dual signature algorithms

IETF OpenPGP Working Group

The IETF OpenPGP WG is specifying:
• the use of the pure SLH-DSA for digital signature
• composite public-key encryption based on ML-KEM and two elliptic

curve algorithms (X25519, X448)
• composite public-key signatures based on ML-DSA and EdDSA

IETF SSHM Working Group

The IETF SSHM (Secure Shell Maintenance) WG is specifying:
• composite public-key encryption based on ML-KEM and ECDH
• composite public-key encryption based on Streamlined NTRU

Prime[1] (not a standard) and X25519

[1] https://ntruprime.cr.yp.to/nist/ntruprime- 20201007.pdf

